No Plagiarism!YEetKymB3OUN0z3TCXTkposted on PENANA 恐懼感8964 copyright protection522PENANAdt2cnYz0Pq 維尼
526Please respect copyright.PENANAmUJqZ01C0g
8964 copyright protection522PENANAg4siLyMjBZ 維尼
∫sin(√x+a)e√x√xdx8964 copyright protection522PENANASYHjUnsWq9 維尼
Substitute u=√x ⟶ dudx=12√x (steps) ⟶ dx=2√xdu:8964 copyright protection522PENANAwZFCA4UoFo 維尼
=2∫eusin(u+a)du… or choose an alternative:526Please respect copyright.PENANAypmyoCTPEm
Substitute e√x8964 copyright protection522PENANAtIp2l7zYWs 維尼
Now solving:8964 copyright protection522PENANATkebD397ME 維尼
∫eusin(u+a)du8964 copyright protection522PENANAnJ6uqv4owW 維尼
We will integrate by parts twice in a row: ∫fg′=fg−∫f′g.8964 copyright protection522PENANAsJUEqEDsXM 維尼
First time:8964 copyright protection522PENANAUxTS0FE07f 維尼
f=sin(u+a),g′=eu8964 copyright protection522PENANAnSNs0trTsz 維尼
↓ steps↓ steps8964 copyright protection522PENANAohg2E7kWSy 維尼
f′=cos(u+a),g=eu:8964 copyright protection522PENANAD9YSxK5JRJ 維尼
=eusin(u+a)−∫eucos(u+a)du8964 copyright protection522PENANAPE9avEP8Uv 維尼
Second time:8964 copyright protection522PENANAZMAut3S7JT 維尼
f=cos(u+a),g′=eu8964 copyright protection522PENANAQ1qui9qdrQ 維尼
↓ steps↓ steps8964 copyright protection522PENANAe4FuxStzPZ 維尼
f′=−sin(u+a),g=eu:8964 copyright protection522PENANAQsgEqAFau0 維尼
=eusin(u+a)−(eucos(u+a)−∫−eusin(u+a)du)8964 copyright protection522PENANAcgpC9K4yzN 維尼
Apply linearity:8964 copyright protection522PENANAIx7SJQO0R7 維尼
=eusin(u+a)−(eucos(u+a)+∫eusin(u+a)du)8964 copyright protection522PENANAsMabhfxXHQ 維尼
The integral ∫eusin(u+a)du appears again on the right side of the equation, we can solve for it:8964 copyright protection522PENANAsuHMrSGUvZ 維尼
=eusin(u+a)−eucos(u+a)28964 copyright protection522PENANABBlkMsNpJT 維尼
Plug in solved integrals:8964 copyright protection522PENANAPIr3oP67OW 維尼
2∫eusin(u+a)du=eusin(u+a)−eucos(u+a)8964 copyright protection522PENANALp1gyuLgut 維尼
Undo substitution u=√x:8964 copyright protection522PENANA4oWMD33B9k 維尼
=sin(√x+a)e√x−cos(√x+a)e√x8964 copyright protection522PENANA0LUTOIkajX 維尼
The problem is solved:8964 copyright protection522PENANAvKW0OxxK4q 維尼
∫sin(√x+a)e√x√xdx=sin(√x+a)e√x−cos(√x+a)e√x+C8964 copyright protection522PENANA1UWGv1hsGa 維尼
Rewrite/simplify:8964 copyright protection522PENANAmbc10g5L1B 維尼
=(sin(√x+a)−cos(√x+a))e√x+C8964 copyright protection522PENANAoGN083dGSS 維尼
216.73.216.30
ns216.73.216.30da2